
Lecture 2 (Predicates and Quantifiers)

Note that the sentence “P (x) := x + 2 = 2x” is not a proposition. However, if we assign
a value for x then it becomes a proposition. As for each value of x the sentence is either
true or false. Thus the sentence can be treated as a function for which input is a value of x
and the output is a proposition. Such sentence is an example of predicate or a propositional
function. We define it more precise way as follows:

Predicate or Propositional function: Let A be a given set. A propositional function
defined on A is an expression P (x) which has the property that P (a) is true or false for each
a ∈ A. That is P (x) becomes a statement whenever x is replaced by any value a ∈ A.

The set A is called the domain of P (x), and the set Tp of all elements of A for which P (a)

is true is called the truth set of P (x). In other words, Tp = {x : x ∈ A,P (x) is true}

Example: Find the truth set Tp of each propositional function P (x) defined on the set N.

1. Let P (x) be “x+ 5 > 1”. Then Tp = {x : x ∈ N, x+ 5 > 1} = N.

2. Let P (x) be “x + 2 > 7”. Then Tp = {x : x ∈ N, x + 2 > 7} = {6, 7, 8, . . .} consists of
all integers greater than 5.

3. Let P (x) be “x+ 5 < 3”. Then Tp = {x : x ∈ N, x+ 5 < 3} = ∅.

Remark: The above example shows that if P (x) is a propositional function defined on a
set A then P (x) could be true for all x ∈ A, for some x ∈ A or for no x ∈ A. In the next
paragraph, we discuss this quantifiers related notion to such proposition function.

A word which is usually used before noun to express the quantity of object is called quantifier.
Here we discuss few quantifiers which are used in propositional functions.

Universal Quantifier:

Let P (x) be a propositional function defined on a set A. Consider the expression

(∀x ∈ A)P (x) or ∀xP (x)

which reads as “for every x in A, P (x) is true statement. The symbol ∀ which reads “for all”
or “for every” is called universal quantifier. In this case Tp = A (the entire domain).

Existential Quantifier: Let P (x) be a propositional function defined on a set A. Consider
the expression

(∃x ∈ A)P (x) or ∃xP (x)

which reads as “there exists x in A such that P (x) is true statement. The symbol ∃ which
reads “there exists” or “for some” or “for at least one” is called existential quantifier. In this
case Tp ̸= ∅.
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Negation of Quantified Statements

Consider the statement “All maps are linear”. Its negation is either of the following equivalent
statements:

“It is not the case that that all maps are linear”

“There exists at least one map which is not linear”.

Symbolically, let S denote the set of all maps. Then the above negation can be written as

¬(∀x ∈ S) (x is linear) ≡ (∃x ∈ S) (x is not linear).

Or when P (x) denotes “ x is linear”,

¬(∀x ∈ S)P (x) ≡ (∃x ∈ S)¬P (x) or ¬∀xP (x) ≡ ∃x¬P (x).

Thus we have:

1. ¬(∀x ∈ S)P (x) ≡ (∃x ∈ S)¬P (x)

2. ¬(∃x ∈ S)P (x) ≡ (∀x ∈ S)¬P (x)

The above rules for negations for quantifiers are called De Morgan’s laws for quantifiers.

Example: What are the negations of the statements ∀x (x2 > x) and ∃x (x2 = 2)?

Solution: The negation of ∀x (x2 > x) is the statement ¬∀x (x2 > x), which is equiva-
lent to ∃x ¬(x2 > x), that is, ∃x(x2 ≤ x). The negation of ∃x(x2 = 2) is the statement
¬ ∃x(x2 = 2), which is equivalent to ∀x ¬(x2 = 2), that is, ∀x(x2 ̸= 2).

Example: Show that ¬∀x(P (x) → Q(x)) ≡ ∃x(P (x) ∧ ¬Q(x)).

Solution: By De Morgan’s law for universal quantifiers, we know that ¬∀x(P (x) → Q(x))

and ∃x(¬(P (x) → Q(x))) are logically equivalent. Since P (x) → Q(x) ≡ ¬P (x) ∨ Q(x), it
follows that ¬∀x(P (x) → Q(x)) ≡ ∃x(P (x) ∧ ¬Q(x)).

Nested Quantifiers: Two quantifiers are nested if one is within the scope of the other.

Example: The statement
∀x∀y(x+ y = y + x)

says that x+y = y+x for all real numbers x and y. This is the commutative law for addition
of real numbers.

The statement
∀x ∃y(x+ y = 0)
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says that for every real number x there is a real number y such that x + y = 0. This states
that every real number has an additive inverse.

Similarly, the statement

∀x ∀y∀z (x+ (y + z) = (x+ y) + z)

is the associative law for addition of real numbers.

Quantifications of two variables

Statement When True? When False (or Negation of True)?
∀x ∀yP (x, y) P (x, y) is true for every pair x, y There is a pair x, y for which

P (x, y) is false
∀x ∃yP (x, y) For every x there is a y for which

P (x, y) is true
There is an x such that P (x, y) is
false for every y.

∃x ∀yP (x, y) There is an x for which P (x, y) is
true for every y.

For every x there is a y for which
P (x, y) is false.

∃x ∃yP (x, y) There is a pair x, y for which
P (x, y) is true.

P (x, y) is false for every pair x, y.

Example: We can express that a function f : X → Y is one-to-one using quantifiers as

∀a ∀b
(
f(a) = f(b) → a = b

)
.

Example: A function f : X → Y is onto if

∀y ∃x (f(x) = y).

Thus f is not one-to-one if there is a pair a, b for which f(a) = f(b) → a ̸= b.

Example: Use quantifiers to express the definition of the limit of a real-valued function
f(x) of a real variable x at a point a in its domain.
Solution: Recall that the definition of the statement

lim
x→a

f(x) = L

is: For every real number ϵ > 0 there exists a real number δ > 0 such that |f(x) − L| < ϵ

whenever 0 < |x− a| < δ. This definition of a limit can be phrased in terms of quantifiers by

∃L ∈ R ∀ϵ > 0 ∃δ > 0 ∀x
(
0 < |x− a| < δ → |f(x)− L| < ϵ

)
.

Thus negation of above is:

∀L ∈ R ∃ϵ > 0 ∀δ > 0 ∃x
(
0 < |x− a| < δ ∧ |f(x)− L| ≥ ϵ

)
.
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Example from “A basic course in Real Analysis by S Kumaresan”: Suppose we have a sen-
tence: “In each tree in the orchard, we can find a branch in which all the leaves are green”.

Let us convert the above sentence as a mathematical sentence: Let T denote the set of all
trees in the orchard. Let t ∈ T be a tree. Let Bt denote the set of all branches of the tree t.
Let b ∈ Bt be a branch of tree t. Let Lb denote the set of all leaves on the branch b. Then
the above sentence can be written as:

∀t ∈ T ∃ b ∈ Bt ∀ l ∈ Lb, l is green. The negation is:

¬(∀t ∈ T ∃ b ∈ Bt ∀ l ∈ Lb, l is green) ≡ ∃ t ∈ T ∀ b ∈ Bt ∃ l ∈ Lb, l is not green.
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