Lecture 2 (Predicates and Quantifiers)

Note that the sentence “P(x) := z + 2 = 22" is not a proposition. However, if we assign
a value for x then it becomes a proposition. As for each value of x the sentence is either
true or false. Thus the sentence can be treated as a function for which input is a value of z
and the output is a proposition. Such sentence is an example of predicate or a propositional
function. We define it more precise way as follows:

Predicate or Propositional function: Let A be a given set. A propositional function
defined on A is an expression P(z) which has the property that P(a) is true or false for each
a € A. That is P(z) becomes a statement whenever z is replaced by any value a € A.

The set A is called the domain of P(x), and the set T}, of all elements of A for which P(a)
is true is called the truth set of P(x). In other words, T, = {z : © € A, P(x)is true}

Example: Find the truth set 7}, of each propositional function P(z) defined on the set N.
1. Let P(z) be“c+5>1" Then T, ={z:x2 € N,o+5>1} =N.

2. Let P(x) be“c +2>7. Then T, ={r: 2 e Nyx +2> 7} = {6,7,8,...} consists of
all integers greater than 5.

3. Let P(x) be “c4+5<3". Then T, ={z:z e Nyx +5 < 3} = 0.

Remark: The above example shows that if P(x) is a propositional function defined on a
set A then P(z) could be true for all z € A, for some x € A or for no z € A. In the next
paragraph, we discuss this quantifiers related notion to such proposition function.

A word which is usually used before noun to express the quantity of object is called quantifier.
Here we discuss few quantifiers which are used in propositional functions.

Universal Quantifier:

Let P(z) be a propositional function defined on a set A. Consider the expression

(Vx € A) P(x) or VzP(x)
which reads as “for every x in A, P(x) is true statement. The symbol ¥ which reads “for all”
or “for every” is called universal quantifier. In this case 7, = A (the entire domain).

Existential Quantifier: Let P(x) be a propositional function defined on a set A. Consider
the expression

(Jz € A) P(x) or 3z P(x)

which reads as “there exists x in A such that P(z) is true statement. The symbol 3 which
reads “there exists” or “for some” or “for at least one” is called existential quantifier. In this

case T, # 0.



Negation of Quantified Statements

Consider the statement “All maps are linear”. Its negation is either of the following equivalent
statements:

“It is not the case that that all maps are linear”
“There exists at least one map which is not linear”.

Symbolically, let S denote the set of all maps. Then the above negation can be written as

—(Vz € S) (x is linear) = (z € S) (xisnot linear).

Or when P(z) denotes “ x is linear”,

—(Vx € S)P(z) = (Jx € S)-P(z) or —VxP(x)=3Jx-P(x).

Thus we have:
1. =(Vx € ) P(x) = (Fz € S)-P(x)
2. =(Fz € S) P(x) = (Vx € S)-P(x)

The above rules for negations for quantifiers are called De Morgan’s laws for quantifiers.

Example: What are the negations of the statements Vz (2 > z) and 3z (2% = 2)?
Solution: The negation of Vx (x? > z) is the statement —Vz (z* > ), which is equiva-
lent to 3z —(z? > z), that is, Iz(z? < z). The negation of Jz(z? = 2) is the statement
— Jx(z? = 2), which is equivalent to Vo —(z? = 2), that is, Vo (2? # 2).

Example: Show that —-Vz(P(z) — Q(z)) = Jz(P(z) A =Q(z)).

Solution: By De Morgan’s law for universal quantifiers, we know that =Vz(P(z) — Q(x))
and Jz(—=(P(z) — Q(x))) are logically equivalent. Since P(z) — Q(z) = -P(z) vV Q(x), it
follows that -V (P(x) — Q(z)) = Jz(P(x) A =Q(x)).

Nested Quantifiers: Two quantifiers are nested if one is within the scope of the other.

Example: The statement
VaVy(x +y =y + x)

says that x+y = y+x for all real numbers x and y. This is the commutative law for addition
of real numbers.

The statement
Vo Jy(z+y =0)



says that for every real number x there is a real number y such that x + y = 0. This states
that every real number has an additive inverse.

Similarly, the statement
Ve VyVz (x+ (y+2) = (x +y) + 2)

is the associative law for addition of real numbers.

Quantifications of two variables

Statement When True? When False (or Negation of True)?
Va YyP(z,y) P(z,y) is true for every pair z,y | There is a pair z,y for which
P(z,y) is false

Vo JyP(z,y) For every x there is a y for which | There is an x such that P(z,y) is
P(z,y) is true false for every y.

dz YyP(z,y) There is an z for which P(x,y) is | For every x there is a y for which
true for every y. P(z,y) is false.

Jz JyP(z,y) There is a pair z,y for which | P(x,y) is false for every pair z,y.
P(z,y) is true.

Example: We can express that a function f : X — Y is one-to-one using quantifiers as
Va Vb(f(a) = f(b) — a =1b).

Example: A function f: X — Y is onto if

vy 3z (f(z) = y).

Thus f is not one-to-one if there is a pair a, b for which f(a) = f(b) — a # b.

Example: Use quantifiers to express the definition of the limit of a real-valued function
f(z) of a real variable x at a point @ in its domain.
Solution: Recall that the definition of the statement

lim f(z) =L

r—a

is: For every real number € > 0 there exists a real number § > 0 such that |f(z) — L| < €
whenever 0 < |z —a| < 0. This definition of a limit can be phrased in terms of quantifiers by

JLERVe>030>0 Ve <O<\x—a\<(5—>]f(w)—L]<e>.

Thus negation of above is:

VLERIe>0V5> 03 <0<|m—a|<5/\|f(m)—L|Ze>.



Example from “A basic course in Real Analysis by S Kumaresan™ Suppose we have a sen-
tence: “In each tree in the orchard, we can find a branch in which all the leaves are green”.

Let us convert the above sentence as a mathematical sentence: Let T denote the set of all
trees in the orchard. Let t € T be a tree. Let B; denote the set of all branches of the tree ¢.
Let b € B, be a branch of tree t. Let L, denote the set of all leaves on the branch . Then
the above sentence can be written as:

VteT'3dbe B;VI € Ly, is green. The negation is:

—(Vt e T3be BVl € Ly, is green) =3t € TVb € By 3l € Ly, is not green.



